Double Circulant Codes over <InlineEquation ID="IE1"> <EquationSource Format="MATHTYPE"> <![CDATA[% MathType!MTEF!2!1!+- % feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgznf % gDOjdaryqr1ngBPrginfgDObcv39gaiuaacqWFKeIwdaWgaaWcbaGa % aGinaaqabaaaaa!419E! ]]> </EquationSource> <EquationSource Format="TEX"> <![CDATA[$$\mathbb{Z}_4 $$]]> </EquationSource> </InlineEquation> and Even Unimodular Lattices
نویسنده
چکیده
With the help of some new results about weight enumerators of self-dual codes overZ4 we investigate a class of double circulant codes over Z4, one of which leads to an extremal even unimodular 40-dimensional lattice. It is conjectured that there should be “Nine more constructions of the Leech lattice”.
منابع مشابه
Derangements and Tensor Powers of Adjoint Modules for <InlineEquation ID="IE1"> <EquationSource Format="MATHTYPE"> <![CDATA[% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWefv3ySLgzgj% xyRrxDYbqeguuDJXwAKbIrYf2A0vNCaGqbaiab-Xc8Zjab-vc8Snaa% BaaaleaacaWGUbaabeaaaaa!45E7!]]> </EquationSource> <EquationSource Format="TEX"> <![CDATA[$$\mathfrak{s}\mathfrak{l}_n $$]]> </EquationSource> </InlineEquation>
We obtain the decomposition of the tensor spacesl⊗k n as a module forsln , find an explicit formula for the multiplicities of its irreducible summands, and (when n ≥ 2k) describe the centralizer algebra C = Endsln (sl⊗k n ) and its representations. The multiplicities of the irreducible summands are derangement numbers in several important instances, and the dimension of C is given by the number...
متن کاملEstimating the Minimal Number of Colors in Acyclic <InlineEquation ID="IE1"> <EquationSource Format="MATHTYPE"> <![CDATA[% MathType!MTEF!2!1!+- % feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWexLMBb50ujb % qeguuDJXwAKbacfiGae83AaSgaaa!3C30! ]]> </EquationSource> <EquationSource Format="TEX"> <![CDATA[$$k $$]]> </EquationSource> </InlineEquation>-Strong Colorings of Maps on Surfaces
A coloring of the vertices of a graph is called acyclic if the ends of each edge are colored in distinct colors, and there are no two-colored cycles. Suppose each face of rank k , k ≥ 4 , in a map on a surface S is replaced by the clique having the same number of vertices. It is proved in [1] that the resulting pseudograph admits an acyclic coloring with the number of colors depending linearly ...
متن کامل$(1+2u)$-constacyclic codes over $\mathbb{Z}_4+u\mathbb{Z}_4$
Let $R=\mathbb{Z}_4+u\mathbb{Z}_4,$ where $\mathbb{Z}_4$ denotes the ring of integers modulo $4$ and $u^2=0$. In the present paper, we introduce a new Gray map from $R^n$ to $\mathbb{Z}_{4}^{2n}.$ We study $(1+2u)$-constacyclic codes over $R$ of odd lengths with the help of cyclic codes over $R$. It is proved that the Gray image of $(1+2u)$-constacyclic codes of length $n$ over $R$ are cyclic c...
متن کاملSome Results on Linear Codes over $\mathbb{Z}_4+v\mathbb{Z}_4$
In this paper, we study the linear codes over the commutative ring R = Z4 + vZ4, where v2 = v. We define the Gray weight of the elements of R and give a Gray map from Rn to Z2n 4 , which lead to the MacWillams identity of the linear code over R. Some useful results on self-dual code over R are given. Furthermore, the relationship between some complex unimodular lattices and Hermitian self-dual ...
متن کاملType II Self-Dual Codes over Finite Rings and Even Unimodular Lattices
In this paper, we investigate self-dual codes over finite rings, specifically the ring Z2m of integers modulo 2m . Type II codes over Z2m are introduced as self-dual codes with Euclidean weights which are a multiple of 2m+1. We describe a relationship between Type II codes and even unimodular lattices. This relationship provides much information on Type II codes. Double circulant Type II codes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997